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Abstract
We proceed with the construction of normalizable Dirac wave packets for
treating chiral oscillations in the presence of an external magnetic field. Both
chirality and helicity quantum numbers correspond to variables of fundamental
importance in the study of chiral interactions, in particular, in the context
of neutrino physics. In order to clarify a subtle aspect in the confront
of such concepts which, for massive particles, represent different physical
quantities, we are specifically interested in quantifying chiral oscillations for
a fermionic Dirac-type particle (neutrino) non-minimally coupling with an
external magnetic field B by solving the corresponding interacting Hamiltonian
(Dirac) equation. The viability of the intermediate wave-packet treatment
becomes clear when we assume B orthogonal/parallel to the direction of the
propagating particle.

PACS numbers: 02.30.Cj, 03.65.Pm, 11.30.Rd

Since those early days when Dirac derived the relativistic wave equation for a free propagating
electron [1], several efforts have been produced in the literature to solve the Dirac equation
with other analytical forms of interacting potentials, from central potential solutions [2, 3]
to recent theoretical attempts to describe quark confinement [4, 5]. In fact, obtaining exact
solutions of a generic class of Dirac wave equations becomes important since, for many
times, the conceptual understanding of physics can only be brought about by such solutions.
These solutions also correspond to valuable means for checking and improving models and
numerical methods for solving complicated physical problems. In the context in which we
intend to explore the Dirac formalism, we can take into account the effect of neutrino spin
flipping attributed to some dynamic external [6] interacting processes which come from the
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non-minimal coupling of a magnetic moment with an external electromagnetic field [7] and
which was formerly supposed to be a relevant effect in the context of the solar-neutrino puzzle
by suggesting an explanation for the LSND anomaly [8–10]1.

In the corresponding theoretical framework, we can note a more extended discussion
involving the evolution equation of the covariant neutrino spin operator in the Heisenberg
representation in the presence of general external fields [16]. Such an analysis involves both
electromagnetic and weak interactions with background matter [16, 17]. In a similar context,
some developments considering the minimal coupling of an electrically charged particle with
an external magnetic field were also performed for an electron described by the Dirac equation
[18] and the theory of spin light of neutrino in matter and electromagnetic fields has been
extensively studied [19].

We know, however, that independently of any external electromagnetic field, since
neutrinos are detected essentially via V–A charged weak currents, the chiral oscillation
mechanism by itself may even provide a solution to the posed anomaly. The point is that
an erroneous correspondence is supposed to cause some confusion in the literature where the
concept of helicity has been currently used in the place of chirality. In the standard model of
flavour-changing interactions, neutrinos with positive chirality are decoupled from neutrino
absorbing charged weak currents [24]. Consequently, neutrinos with positive chirality are
sterile with respect to weak interactions. By reporting to the formalism with Dirac wave packets
[25, 26], which leads to the study of chiral oscillations [24] (in vacuum), we are now interested
in appointing the modifications of the chirality dynamics which are observed when the neutrino
electrodynamics is accurately discussed.

In this context, our aim in this paper is to try to accommodate the Dirac wave-packet
formalism [25, 26] and a further class of static characteristics of neutrinos, namely, the
(electro)magnetic moment which appears in a Lagrangian with non-minimal coupling. By
following this line of reasoning, we are not only interested in solving a ‘modified’ Dirac wave
equation but also in constructing Dirac wave packets which can be used for describing the
dynamics of chirality, a physical variable which is relevant in the context of the quantum
oscillation phenomena.

Despite their electric charge neutrality, neutrinos can interact with a photon through
loop (radiative) diagrams. The Lagrangian for the interaction between a fermionic field
ψ(x) and an electromagnetic field written in terms of the field-strength tensor Fµν(x) =
∂µAν(x) − ∂νAµ(x) is given by

L = 1
2ψ(x)σµν[µFµν(x) − dFµν(x)]ψ(x) + h.c., (1)

where x = (t,x), σµν = i
2 [γµ, γν], the dual field-strength tensor Fµν(x) is given by

Fµν(x) = 1
2εµνλδF λδ(x) 2 and the coefficients µ and d represent, respectively, the magnetic

and the electric dipole moment which establish the neutrino electromagnetic coupling. One can
note that we have not discriminated the flavour/mass mixing elements in the above interacting
Lagrangian since we are indeed interested in the physical observable dynamics ruled by the
Hamiltonian

H = α · p + βm − β
[σµν

2
(µFµν(x) − dFµν(x)) + h.c.

]
= α · p + β[m − µΣ · B(x) + dΣ ·E(x)], (2)

1 In fact, the advent of the neutrino physics [11–13] has stirred up an increasing number of theoretical works where the
quantum oscillation mechanisms [14, 15, 21–23] have been deeply analysed. Although clear experimental evidence
is still missing, it is widely believed that neutrino mixing and oscillations are the basic tool for further understanding
of neutrino phenomenology.
2 εµνλδ is the totally fourth rank antisymmetric tensor.
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where, in terms of the Dirac matrices, α = ∑3
k=1 αkk̂ = ∑3

k=1 γ0γkk̂, β = γ0 and B(x)

and E(x) are, respectively, the magnetic and electric fields. In fact, equation (2) could be
extended to an equivalent matrix representation with flavour and mass mixing elements where
the diagonal (off-diagonal) elements described by µi,j (mi,j ) and di,j (mi,j ), where i, j are
mass indices, would be called diagonal (transition) moments. In this context, for both Dirac
and Majorana neutrinos, we could have transition amplitudes with non-vanishing magnetic
and electric dipole moments [27–29]. Otherwise, the CP invariance holds the diagonal electric
dipole moments null [30]. Specifically for Majorana neutrinos, it can be demonstrated that
the diagonal magnetic and electric dipole moments vanish if CPT invariance is assumed [27].

Turning back to the simplifying example of diagonal moments and assuming CP and CPT
invariance, we can restrict our analysis to the coupling with only an external magnetic field
B(x) by setting d = 0. From this point, the expression for µ can be found from Feynman
diagrams for magnetic moment corrections [30] and turns out to be proportional to the neutrino
mass (matrix),

µ = 3eG

8
√

2π2
m = 3meG

4
√

2π2
µBmν = 2.7 × 10−10µB

mν

mN

, (3)

where G is the Fermi constant and mN is the nucleon mass3. In particular, for mν ≈ 1 eV, the
magnetic moment introduced by the above formula is exceedingly small to be detected or to
affect astrophysical or physical processes.

Since we are interested in constructing the dynamics ruled by the Hamiltonian of
equation (2), we first observe that the free propagating momentum is not a conserved quantity,

d

dt
〈p〉 = i〈[H,p]〉 = Re(µ)〈β∇(Σ ·B(x))〉. (4)

In the same way, the particle velocity given by
d

dt
〈x〉 = i〈[H,x]〉 = 〈α〉 (5)

comes out as a non-null value. After solving the x(t)(α(t)) differential equation, it is possible
to observe that, in addition to a uniform motion, the fermionic particle executes very rapid
oscillations known as zitterbewegung [32]. By following an analogous procedure for the Dirac
chiral operator γ5, newly recurring to the equation of the motion, it is possible to have the
chirality and the helicity dynamics respectively given by

d

dt
〈γ 5〉 = 2i〈γ0γ5[m − µΣ ·B(x)]〉 (6)

and
d

dt
〈h〉 = 1

2
µ〈γ0[(Σ · ∇)(Σ · B(x)) + 2(Σ × B(x)) · p]〉, (7)

where we have alternatively defined the particle helicity as the projection of the spin angular
momentum onto the vector momentum, h = 1

2Σ ·p (with p in place of p̂). From equations (6)–
(7) we can state that if a neutrino has an intrinsic magnetic moment and passes through a region
filled by a magnetic field, the neutrino helicity can flip in a completely different way from
how chiral oscillations evolve in time. In the non-interacting case, it is possible to verify that
the time-dependent averaged value of the Dirac chiral operator γ5 has an oscillating behaviour
[24] very similar to the rapid oscillations of the position. Equations (6)–(7) can be reduced to
the non-interacting case by setting B(x) = 0 so that

d

dt
〈h〉 = i〈[H,h]〉 = −〈(α × p) · p̂〉 = 0 (8)

3 We are using some results of the standard SU(2)L ⊗ U(1)Y electroweak theory [31].
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and
d

dt
〈γ 5〉 = i〈[H, γ 5]〉 = 2im〈γ 0γ 5〉, (9)

from which we confirm that the chiral operator γ 5 is not a constant of the motion [24]. The
effective value of equation (9) appears only when both positive and negative frequencies are
taken into account to compose a Dirac wave packet, i.e. the non-null expectation value of
〈γ0γ5〉 is revealed by the interference between Dirac equation solutions with opposite sign
frequencies. The effective contribution due to this interference effect led us to report the Dirac
wave-packet formalism in order to quantify neutrino chiral oscillations in the presence of an
external magnetic field.

Assuming the simplifying hypothesis of a uniform magnetic field B, the physical
implications of the non-minimal coupling with an external magnetic field can then be studied
by means of the eigenvalue problem expressed by the Hamiltonian equation

H(p)ϕn = En(p)ϕn = {α · p + β[m − µΣ · B]}ϕn, (10)

for which the explicit 4 × 4 matrix representation is given by

H(p)ϕn =




m − µBz −µ(Bx − iBy) pz px − ipy

−µ(Bx + iBy) m + µBz px + ipy −pz

pz px − ipy −(m − µBz) µ(Bx − iBy)

px + ipy −pz µ(Bx + iBy) −(m + µBz)


ϕn. (11)

The most general eigenvalue (En(p)) solution of the above problem is given by

En(p) = ±Es(p) = ±
√

m2 + p2 + a2 + (−1)s2
√

m2a2 + (p × a)2, s = 1, 2, (12)

where we have denoted En=1,2,3,4 = ±Es=1,2 and set a = µB. The complete set of
orthonormal eigenstates ϕn thus can be written in terms of the eigenfunctions U(ps) with
positive energy eigenvalues (+Es(p)) and the eigenfunctions V(ps) with negative energy
eigenvalues (−Es(p)),

U(ps) = −N(ps)




√
A−

s

A+
s

,

√
α+

s

α−
s

,

√
A−

s α+
s

A+
s α

−
s

,−1




†

V(ps) = −N(ps)




√
A−

s

A+
s

,−
√

α−
s

α+
s

,−
√

A−
s α−

s

A+
s α

+
s

,−1




†

,

(13)

where ps is the relativistic quadrimomentum, ps = (Es(p),p), N(ps) is the normalization
constant and

A±
s = 
2

s (p) ± 2m|a| − a2, α±
s = 2Es(p)|a| ± (


2
s (p) + a2

)
, (14)

with


2
s (p) = E2

s (p) − (m2 + p2) + a2. (15)

We can observe that the above spinorial solutions are free of any additional constraint, namely,
at a given time t, they are independent functions of p and they do not represent chirality/helicity
eigenstates.

In order to describe the above Hamiltonian dynamics for a generic observable O(t) we
can first seek a generic plane-wave decomposition as

exp[−i(Es(p)t − p ·x)]U(ps), for positive frequencies and

exp[i(Es(p)t − p · x)]V(ps), for negative frequencies,
(16)
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so that the time evolution of a plane wave packet ψ(t,x) can be written as

ψ(t,x) =
∫

d3p

(2π)3

∑
s=1,2

{b(ps)U(ps) exp[−iEs(p)t]

+ d∗(p̃s)V(p̃s) exp[+iEs(p)t]} exp[ip · x], (17)

with p̃s = (Es,−p). Meanwhile, equation (17) requires some extensive mathematical
manipulations for explicitly constructing the dynamics of an operator O(t) like

O(t) =
∫

d3xψ †(t,x)Oψ(t,x). (18)

If, however, the quoted observables like the chirality γ 5, the helicity h or even the spin
projection onto B commuted with the Hamiltonian H, we could reconfigure the above solutions
to the simpler ones. To illustrate this point, let us limit our analysis to very restrictive spatial
configurations of B so that, as a first attempt, we can calculate the observable expectation
values which appear in equation (6). Let us then assume that the magnetic field B is either
orthogonal or parallel to the momentum p. For both of these cases the spinor eigenstates can
then be decomposed into orthonormal bi-spinors as

U(ps) = N+(ps)

[
ϕ+(ps)

χ+(ps)

]
(19)

and

V(ps) = N−(ps)

[
ϕ−(ps)

χ−(ps)

]
. (20)

Eventually, in order to simplify some subsequent calculations involving chiral oscillations, we
could set ϕ±

1,2 and χ±
1,2 as eigenstates of the spin projection operator σ · B, i.e. besides being

energy eigenstates, the general solutions U(ps) and V(ps) would become eigenstates of the
operator Σ ·B and, equivalently, of Σ · a.

Now equation (10) can be decomposed into a pair of coupled equations like

(±Es − m + σ ·a)ϕ±
s = ±σ ·pχ±

s , (±Es + m − σ ·a)χ±
s = ±σ · pϕ±

s , (21)

where we have suppressed the ps dependence. By introducing the commuting relation
[σ ·p, σ · B] = 0, which is derived when p × B = 0, the eigenspinor representation can be
reduced to

U(ps) =
√

Es + ms

2Es

[
ϕ+

s

σ ·p
Es+ms

ϕ+
s

]
(22)

and

V(ps) =
√

Es + ms

2Es

[
σ · p

Es+ms
χ−

s

χ−
s

]
, (23)

with ms = m − (−1)s |a| and the energy eigenvalues

±Es = ±
√

p2 + m2
s . (24)

In this case, the closure relations can be constructed in terms of∑
s=1,2

U(ps) ⊗ U†(ps)γ0 =
∑
s=1,2

{
γµp

µ
s + ms

2Es

[
1 − (−1)sΣ · â

2

]}
(25)

−
∑
s=1,2

V(ps) ⊗ V†(ps)γ0 =
∑
s=1,2

{−γµp
µ
s + ms

2Es

[
1 − (−1)sΣ · â

2

]}
.
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Analogously, by introducing the anti-commuting relation {σ · p, σ ·B} when p ·B = 0, the
eigenspinor representation can be reduced to

U(ps) =
√

ε0 + m

2ε0

[
ϕ+

s

σ ·p
ε0+m

ϕ+
s

]
(26)

and

V(ps) =
√

ε0 + m

2ε0

[
σ ·p
ε0+m

χ−
s

χ−
s

]
, (27)

with ε0 =
√

p2 + m2 and the energy eigenvalues

±Es = ±[ε0 + (−1)s |a|]. (28)

In this case, the closure relations can be constructed in terms of∑
s=1,2

U(ps) ⊗ U†(ps)γ0 = γµp
µ

0 + m

2ε0

∑
s=1,2

[
1 − (−1)sγ0Σ · â

2

]

−
∑
s=1,2

V(ps) ⊗ V†(ps)γ0 = −γµp
µ

0 + m

2ε0

∑
s=1,2

[
1 − (−1)sγ0Σ · â

2

]
,

(29)

where p0 = (ε0,p).
Since we can set ϕ+

1,2 ≡ χ−
1,2 as the components of an orthonormal basis, we can

immediately deduce the orthogonality relations

U†(ps)U(pr) = V†(ps)V(pr) = δsr , U†(ps)γ0V(pr) = V†(ps)γ0U(pr) = 0, (30)

which are valid for both of the above cases.
Finally, the calculation of the expectation value of γ5(t) is substantially simplified when

we substitute the above closure relations into the wave-packet expression of equation (17). To
clarify this point, we suppose that the initial condition over ψ(t,x) can be set in terms of the
Fourier transform of the weight function

ϕ(p − pi )w =
∑
s=1,2

{b(ps)U(ps) + d∗(p̃s)V(p̃s)} (31)

so that

ψ(0,x) =
∫

d3p

(2π)3
ϕ(p − pi ) exp[ip · x]w, (32)

where w is some fixed normalized spinor. By using the orthonormality properties of
equation (30), we find [25]

b(ps) = ϕ(p − pi )U†(ps)w, d∗(p̃s) = ϕ(p − pi )V†(p̃s)w. (33)

For any initial state ψ(0,x) given by equation (32), the negative frequency solution coefficient
d∗(p̃s) necessarily provides a non-null contribution to the time-evolving wave packet. This
obliges us to take the complete set of Dirac equation solutions to construct a complete and
correct wave-packet solution. Only if we consider the initial spinor w being a positive energy
(Es(p)) and momentum p eigenstate, the contribution due to the negative frequency solutions
d∗(p̃s) will become null and we will have a simple expression for the time evolution of any
physical observable. By substituting the closure relations of equations (25) and (29) into the
time-evolution expression for the above wave packet, equation (17) can thus be rewritten as

ψ(t,x) =
∫

d3p

(2π)3
ϕ(p − pi ) exp[ip · x]

×
∑
s=1,2

{[
cos[Est] − i

Hs

Es

sin[Est]

](
1 − (−1)sΣ · â

2

)}
w (34)
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for the first case where Es is given by equation (24) and Hs = α · p + γ0ms , or as

ψ(t,x) =
∫

d3p

(2π)3
ϕ(p − pi ) exp[ip · x]

×
∑
s=1,2

{[
cos[Est] − i

H0

ε0
sin[Est]

](
1 − (−1)sγ0Σ · â

2

)}
w (35)

for the second case where ε0 is given by equation (28) and H0 = α · p + γ0m.
Once we have assumed that the neutrino electroweak interactions at the source and detector

are (left) chiral (ψγ µ(1 −γ 5)ψWµ) only the component with negative chirality contributes to
the propagation. It was already demonstrated that, in vacuum, chiral oscillations can introduce
very small modifications to the neutrino conversion formula [20, 24]. The probability that a
neutrino produced as a negative chiral eigenstate be detected after a time t can be summarized
by the expression

P(να,L → να,L; t) =
∫

d3xψ †(t,x)
1 − γ5

2
ψ(t,x) = 1

2
(1 − 〈γ5〉(t)). (36)

From this integral, it is readily seen that an initial −1 chiral mass-eigenstate will evolve with
time changing its chirality. By assuming that the fermionic particle is created at time t = 0
as a −1 chiral eigenstate (γ5w = −w), in the case of [σ · p, σ · B] = 0 (B parallel to p), we
could write

〈γ5〉(t) =
∫

d3p

(2π)3
ϕ2(p − pi )w

†
∑
s=1,2

{[
γ5 cos2[Est] + i

[Hs, γ5]

2Es

sin[2Est]

+
Hsγ5Hs

E2
s

sin2[Est]

](
1 − (−1)sΣ · â

2

)}
w

= (−1)

∫
d3p

(2π)3
ϕ2(p − pi )

∑
s=1,2

{[
cos2[Est] +

p2 − m2
s

E2
s

sin2[Est]

]

×w†
(

1 − (−1)sΣ · â

2

)
w

}

= (−1)

∫
d3p

(2π)3
ϕ2(p − pi )

∑
s=1,2

{[
p2

E2
s

+
m2

s

E2
s

cos[2Est]

]
w†

(
1 − (−1)sΣ · â

2

)
w

}
,

(37)

where we have used the wave-packet expression of equation (34) and, in the second passage,
we have observed that

w†γ5w = −1, w†[Hs, γ5]w = 0 and Hsγ5Hs = p2 − m2
s . (38)

The above expression can be reduced to a simpler one in the non-interacting case [24]. Due
to a residual interaction with the external magnetic field B we could also observe chiral
oscillations in the ultra-relativistic limit. However, from the phenomenological point of view,

the coefficient of the oscillating term goes with m2
s

E2
s

which makes chiral oscillations become
not relevant for ultra-relativistic neutrinos [15, 20]. As a toy model illustration, by assuming a
highly peaked momentum distribution centred around a non-relativistic momentum pi 	 ms ,
where the wave-packet effects are practically ignored, the chiral conversion formula can be
written as

P(να,L → να,R; t) ≈ 1
2 (1 − cos[2mt] cos[2|a|t] − sin[2mt] sin[2|a|t]w†Σ · âw), (39)
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where all the oscillating terms come from the interference between positive and negative
frequency solutions which compose the wave packets. Turning back to the case where
{σ ·p, σ · B} = 0 (B orthogonal to p), we could have a phenomenologically more interesting
result. By following a similar procedure with the mathematical manipulations, we could write

〈γ5〉(t) =
∫

d3p

(2π)3
ϕ2(p − pi )w

†
{
γ5 cos[E1t] cos[E2t] +

H0γ5H0

ε2
0

sin[E1t] sin[E2t]

+
i

2
[[H0, γ5] sin[E1 + E2] − {H0, γ5}γ0Σ · â sin[E1 − E2]]

}
w

= (−1)

∫
d3p

(2π)3
ϕ2(p − pi )

{
cos[E1t] cos[E2t] +

p2 − m2

ε2
0

sin[E1t] sin[E2t]

}

= (−1)

∫
d3p

(2π)3
ϕ2(p − pi )

{
p2

ε2
0

cos[2|a|t] +
m2

ε2
0

cos[2ε0t]

}
, (40)

where we have used the wave-packet expression of equation (35) and, in addition to w†γ5w =
−1, we have also observed that {H0, γ5} = 2γ5Σ · p̂ and, subsequently, w†Σ · p̂γ0Σ · âw = 0.
Now, in addition to the non-interacting oscillating term m2

ε2
0

cos[2ε0t], which comes from the

interference between positive and negative frequency solutions of the Dirac equation, we have
an extra term which comes from the interference between equal sign frequencies and, for very
large time scales, can substantially change the oscillating results. In this case, it is interesting
to observe that the ultra-relativistic limit of equation (40) leads to the following expressions
for the chiral conversion formulae,

P(να,L → να,R; t) ≈ 1
2 (1 − cos[2|a|t]) (41)

and

P(να,L → να,L; t) ≈ 1
2 (1 + cos[2|a|t]), (42)

which, differently from chiral oscillations in vacuum, can be phenomenologically relevant.
Obviously, we are reproducing the consolidated results already attributed to neutrino spin-
flipping [30] where, by taking the ultra-relativistic limit, the chirality quantum number
can be approximated by the helicity quantum number, but now it was accurately derived
from the complete formalism with Dirac spinors. We still remark that, in the standard
treatment of vacuum neutrino oscillations, the use of scalar mass-eigenstate wave packets
made up exclusively of the positive frequency plane-wave solutions is implicitly assumed. A
satisfactory description of fermionic (spin one-half) particles requires the use of the Dirac
equation as the evolution equation for the mass-eigenstates despite the standard oscillation
formula giving the correct result when it is properly interpreted. We have observed in
equations (40) and (37) that the spinorial form and the interference between positive and
negative frequency components of the mass-eigenstate wave packets can introduce small
modifications to the standard conversion formulae when they concern with non-relativistic
neutrinos [15]. In the next step, by following the Dirac wave packet prescription, we intend
to study the coupling of chiral oscillations with flavour conversion effects for neutrinos non-
minimally interacting with an external magnetic field and, subsequently, verify the possibility
of some phenomenological implications.

To summarize, we would have been dishonest if we had ignored the complete analysis of
the general case comprising equations (10)–(13) where we had not yet assumed an arbitrary
(simplified) spatial configuration for the magnetic field. Meanwhile, such a general case leads
to the formal connection between quantum oscillation phenomena and a very different field.
It concerns with the curious fact that those complete (general) expressions for propagating
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wave packets do not satisfy the standard dispersion relations such as E2 = m2 + p2 except the
two particular cases where Es(p)2 = m2

s + p2 for p × B = 0 or ε2
0 = m2 + p2 for p ·B = 0.

In principle, it could represent an inconvenient obstacle forbidding the extension of these
restrictive cases to a general one. However, we believe that it can also represent a starting
point in discussing dispersion relations which may be incorporated into frameworks encoding
the breakdown (or the validity) of Lorentz invariance.
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